SOLAR ENERGY, WIND POWER AND GEOTHERMAL ENERGY

CONFÉRENCE DES NATIONS UNIES SUR LES SOURCES NOUVELLES D'ÉNERGIE

Agenda item - Point de l'ordre du jour:

II.D.2 - Combined use of various energy sources and energy storage problems: Energy storage problems

Emploi combiné de diverses sources d'énergie; problèmes d'emmagasinage de l'énergie: Problèmes d'emmagasinage de l'énergie

CHEMICAL CONVERSION AND STORAGE OF CONCENTRATED SOLAR ENERGY

By Rudolph J. MARCUS and Henry C. WOHLERS

Chemistry Department
Stanford Research Institute
Menlo Park, California

CONVERSION CHIMIQUE ET EMMAGASINAGE D'ENERGIE SOLAIRE CONCENTREE

par Rudolph J. MARCUS et Henry C. WOHLERS

Service de chimie, Institut de recherches de Stanford,
Menlo Park, Californie, Etats-Unis

PAPERS HAVE BEEN CONTRIBUTED TO THE UNITED NATIONS CONFERENCE ON NEW SOURCES OF ENERGY BY INVITATION AND ARE FOR DISTRIBUTION AS WORKING PAPERS FOR THAT CONFERENCE. THEY ARE PUBLISHED AS PRESENTED BY THE AUTHORS, AND THE CONTENTS AND THE VIEWS EXPRESSED ARE THOSE OF THE AUTHORS.

(See notes overleaf)
NOTES

1. The working languages of the Conference are English and French. All papers contributed are reproduced in one or other of these two languages. Where a paper has been reproduced in both working languages for the convenience of a rapporteur, both language versions are provided as part of the Conference documentation.

2. Where any paper has been contributed in one of the official languages of the UN other than English or French, then it has been made available to the conference in that language. A translation of such papers in either English or French (according to the request of the relevant rapporteur) is provided.

3. Summaries of all papers, as presented by the authors, will be available in both working languages—English and French. Summaries will not include diagrams and photographs and should be read in conjunction with the paper proper, which will bear the same reference number as the summary.

4. Papers and summaries will not be generally available for distribution to other than participants and contributors to the Conference until after the Conference, under publication arrangements to be announced.

1. Les langues de travail de la Conférence sont l'anglais et le français. Tous les mémoires présentés sont reproduits dans l'une ou l'autre de ces deux langues. Lorsqu'un mémoire est reproduit dans les deux langues de travail sur la demande d'un rapporteur, la version anglaise et la version française du mémoire font toutes deux parties de la documentation de la Conférence.

2. Lorsqu'un mémoire est présenté dans une langue officielle de l'ONU autre que l'anglais ou le français, il est publié dans cette langue. Les mémoires appartenant à cette catégorie sont en outre publiés en traduction anglaise ou française (selon la demande du rapporteur chargé du sujet considéré).

3. Des résumés de tous les mémoires, établis par les auteurs eux-mêmes, seront publiés dans les deux langues de travail: anglais et français. Les résumés ne contiendront ni diagrammes ni photographies, et il conviendra de les rapprocher du mémoire lui-même, qui portera le même numéro de référence que le résumé.

4. Les mémoires et les résumés ne pourront en général être distribués à des personnes autres que les participants et les auteurs qu'après la Conférence et selon des modalités de publication qui seront annoncées ultérieurement.
SUMMARY

AGENDA ITEM IID2

CHEMICAL CONVERSION AND STORAGE OF CONCENTRATED SOLAR ENERGY

Rudolph J. Marcus and Henry C. Wohlers
Chemistry Department
Stanford Research Institute
Menlo Park, California

We have found that the solar furnace can be used as a light source as well as a heat source. The equipment which has been developed for this use of the furnace is described. With these modifications the solar furnace becomes a concentrated light source. It operates at ambient temperature or below, requires little or no refrigeration, and can be used for photochemical reactions. The systems chosen for use with this light source absorb light only in selected wavelength regions, thus resulting in a minimum heat absorption. In this way the focal spot of the furnace can be contained within a liquid.

Of the energy storing reactions run so far in the solar furnace in order to try out this technique, only the photolysis of nitrosyl chloride occurs in sunlight at the earth's surface. Other reactions occur at lower wavelengths present only in space. It is quite obvious that this technique has potential usefulness for the conversion and storage of solar energy, and that other reactions should be explored with it.

The photolysis of nitrosyl chloride in carbon tetrachloride solution has been studied in static and in flow systems in a two-foot-diameter solar furnace. An average quantum yield of 0.0232 has been obtained in the static system. An average quantum yield of 0.224 has been obtained in the flow system. Experimental conditions in the flow system have not yet been optimized for maximum quantum yield. The ten times higher quantum yield in the flow system is due to better separation of the photolysis products, nitric oxide and chlorine.

The maximum energy storage achieved so far with nitrosyl chloride is 0.18% and 1.71% of the incident energy in the 3000-6300 Å range for the static system and the flow system, respectively. The latter energy storage is comparable to that of a green plant in an open field.
For comparable quantum yields, a greater amount of energy will be stored by reactions whose products recombine with greater energy release than the 4.9 kcal released by the recombination of nitric oxide and chlorine to form nitrosyl chloride. An example of such possible reactions is the photolysis of molten silver chloride, whose recombination energy is 26.2 kcal/mole.
CONVERSION CHIMIQUE ET EMMAGASINAGE D'ÉNERGIE SOLAIRE CONCENTRÉE

par

Rudolph J. Marcus et Henry C. Wohlers

Service de chimie, Institut de recherches de Stanford,
Menlo Park, Californie, Etats-Unis

Résumé

On a établi que le four solaire peut être utilisé comme source de lumière aussi bien que de chaleur. On décrit, dans le mémoire, le matériel qui a été mis au point en vue de cette application. Avec ces modifications, le four solaire se transforme en source de lumière concentrée. Il fonctionne à la température ambiante ou au-dessous, n'exige pour ainsi dire pas de refroidissement et peut être utilisé pour les réactions photochimiques. Les systèmes choisis en vue de leur utilisation avec cette source de lumière n'absorbent celle-ci que dans les plages de longueurs d'ondes choisies; si bien que la chaleur ainsi absorbée, elle aussi, est réduite au minimum. De la sorte, le foyer du four peut être contenu dans un liquide.

Parmi les réactions visant à accumuler de l'énergie sur lesquelles on a procédé jusqu'à présent à des expériences dans le four solaire pour soumettre cette technique à des essais, seule la photolyse du chlorure de nitrosyle se produit à la surface de la terre sous l'action des rayons solaires. D'autres réactions apparaissent à des longueurs d'ondes moindres, que l'on ne rencontre que dans l'espace interplanétaire. Il est tout à fait évident que cette technique présente une utilité possible pour la conversion et l'accumulation de l'énergie solaire et que d'autres réactions devraient être étudiées parallèlement à elle.
La photolyse du chlorure de nitrolyse dans une solution de tétra-chlorure de carbone a été étudiée dans des systèmes statiques et avec écoulement, dans un four solaire de 2 pieds (61cm) de diamètre. On a obtenu de la sorte, un rendement quantique moyen de 0.0232 avec le système statique. Un rendement quantique moyen de 0.224 a été réalisé avec un système à écoulement. Les conditions expérimentales, dans le système à écoulement, n'ont pas encore été perfectionnées au point de donner le rendement quantique maximum. Le rendement dix fois supérieur que l'on obtient dans les systèmes à écoulement s'explique par une meilleure séparation des produits de la photolyse, l'oxyde nitrique et le chlore.

Les proportions maxima d'emmagasinage réalisés jusqu'à présent avec le chlorure de nitrosyle sont de 0.18% et 1.71% de l'énergie incidente dans la gamme de longueurs d'ondes s'échelonnant de $3,000$ à $6,3000$ Å, pour les systèmes statique et à écoulement respectivement. Le second chiffre est comparable à celui que donne une plante verte dans un champ ensoleillé.

A rendement quantique comparable, une plus grande quantité d'énergie sera emmagasinée par les réactions dont les produits se recombinent avec une libération d'énergie supérieure aux $4,9$ kilocalories dégagées par la recombinaison de l'oxyde nitrique et du chlore pour donner du chlorure de nitrosyle. Un exemple de réaction de cet ordre est la photolyse du chlorure d'argent fondu, dont l'énergie de recombinaison est $26,2$ grandes calories par molécule-gramme.